Temporal patterns of inputs to cerebellum necessary and sufficient for trace eyelid conditioning.

نویسندگان

  • Brian E Kalmbach
  • Tatsuya Ohyama
  • Michael D Mauk
چکیده

Trace eyelid conditioning is a form of associative learning that requires several forebrain structures and cerebellum. Previous work suggests that at least two conditioned stimulus (CS)-driven signals are available to the cerebellum via mossy fiber inputs during trace conditioning: one driven by and terminating with the tone and a second driven by medial prefrontal cortex (mPFC) that persists through the stimulus-free trace interval to overlap in time with the unconditioned stimulus (US). We used electric stimulation of mossy fibers to determine whether this pattern of dual inputs is necessary and sufficient for cerebellar learning to express normal trace eyelid responses. We find that presenting the cerebellum with one input that mimics persistent activity observed in mPFC and the lateral pontine nuclei during trace eyelid conditioning and another that mimics tone-elicited mossy fiber activity is sufficient to produce responses whose properties quantitatively match trace eyelid responses using a tone. Probe trials with each input delivered separately provide evidence that the cerebellum learns to respond to the mPFC-like input (that overlaps with the US) and learns to suppress responding to the tone-like input (that does not). This contributes to precisely timed responses and the well-documented influence of tone offset on the timing of trace responses. Computer simulations suggest that the underlying cerebellar mechanisms involve activation of different subsets of granule cells during the tone and during the stimulus-free trace interval. These results indicate that tone-driven and mPFC-like inputs are necessary and sufficient for the cerebellum to learn well-timed trace conditioned responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent activity in a cortical-to-subcortical circuit: bridging the temporal gap in trace eyelid conditioning.

We have addressed the source and nature of the persistent neural activity that bridges the stimulus-free gap between the conditioned stimulus (CS) and unconditioned stimulus (US) during trace eyelid conditioning. Previous work has demonstrated that this persistent activity is necessary for trace eyelid conditioning: CS-elicited activity in mossy fiber inputs to the cerebellum does not extend in...

متن کامل

Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning.

Eyelid conditioning has proven useful for analysis of learning and computation in the cerebellum. Two variants, delay and trace conditioning, differ only by the relative timing of the training stimuli. Despite the subtlety of this difference, trace eyelid conditioning is prevented by lesions of the cerebellum, hippocampus, or medial prefrontal cortex (mPFC), whereas delay eyelid conditioning is...

متن کامل

Persistent activity in prefrontal cortex during trace eyelid conditioning: dissociating responses that reflect cerebellar output from those that do not.

Persistent neural activity, responses that outlast the stimuli that evoke them, plays an important role in neural computations and possibly in processes, such as working memory. Recent studies suggest that trace eyelid conditioning, which involves a temporal gap between the conditioned and unconditioned stimuli (the trace interval), requires persistent neural activity in a region of medial pref...

متن کامل

Cerebellar cortex contributions to the expression and timing of conditioned eyelid responses.

We used micro-infusions during eyelid conditioning in rabbits to investigate the relative contributions of cerebellar cortex and the underlying deep nuclei (DCN) to the expression of cerebellar learning. These tests were conducted using two forms of cerebellum-dependent eyelid conditioning for which the relative roles of cerebellar cortex and DCN are controversial: delay conditioning, which is ...

متن کامل

A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum.

We present a model based on the synaptic and cellular organization of the cerebellum to derive a diverse range of phenomena observed in Pavlovian eyelid conditioning. These phenomena are addressed in terms of critical pathways and network properties, as well as the sites and rules for synaptic plasticity. The theory is based on four primary hypotheses: (1) Two cerebellar sites of plasticity are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 104 2  شماره 

صفحات  -

تاریخ انتشار 2010